

Stellar Explosions: Core-collapse Supernovae and Nuclear Theory

Sean M. Couch Michigan State University

FRIB Theory Alliance Meeting 1 April 2016

FACILITY FOR RARE ISOTOPE BEAMS

We've solved the problem once and for all!!

FACILITY FOR RARE ISOTOPE BEAMS

We've solved the problem once and for all!!

FACILITY FOR RARE ISOTOPE BEAMS

Sorry.... April Fool's!

Nucleosynthesis from CCSNe

TA	Big Bang nucleosynthesis spallation evolved giant stars α-elements iron group elements									α-rich freeze-out, vp-process, weak s-process?									
1 H										s-process light neutron-capture primary process									
3 Li										r-process			6 C	7 N	8 O	9 F	10 Ne		
11 Na 22.990	12 Mg 24.312											13 Al 26,982	14 Si 28.086	15 P 30,974	16 S 32.064	17 Cl 35,453	18 Ar 39.948		
19 K 39,102	20 Ca 40.08	21 Sc 44,956	22 Ti 47.88	23 V 50,942	24 Cr 51,996	25 Mn 54,938	26 Fe 55,847	27 Co 58,933	28 Ni 58,69	29 Cu 63,54	30 Zn 65,37	31 Ga 69.72	32 Ge 72,59	33 As 74,922	34 Se 78,96	35 Br 79,909	36 Kr \$3,80		
87 Rb 85.47	38 Sr 87,62	39 Y 88,905	40 Zr 91,22	41 Nb 92,906	42 Mo 95	43 Tc (99)	44 Ru 101,07	45 Rh 102.91	46 Pd 106.42	47 Ag 107,87	46 Cd 112.40	49 In 114,82	50 Sn 118.69	51 Sb 121,75	52 Te 127,60	53 I 126,90	54 Xe 131,30		
55 CS 132,91	56 Ba 137,34	57 La 138,91	72 Hf 178.49	73 Ta 180,95	74 W 183.85	75 Re 186,2	76 OS 190,2	77 Ir 192,2	78 Pt 195.09	79 Au 196,97	80 Hg 204.59	81 TI 204,38	82 Pb 209,17	83 Bi 208,98	84 Po (210)	85 At (210)	86 Rn (222)		
87 Fr (223)	88 Ra (226)	89 Ac (227)																	
		1	58 Ce	⁵⁹ Pr	⁶⁰ Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy 162 50	67 Ho 164.93	68 Er	69 Tm	70 Yb	71 Lu			
			90 Th 232.04	91 Pa (231)	92 U 238.03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (249)	98 Cf (251)	99 Es (254)	100 Fm (253)	101 Md (256)	102 No (253)	103 Lr (257)			

FRIB TA Meeting, 1 April 2016

CCSNe dominate the chemical evolution of the universe

A. Frebel, MIT

Nuclear Physics Labs

- Matter at most extreme densities, temperatures, isospin
- Produce most elements in Nature
- Complimentary to experiment at, e.g., NSCL, FRIB, JLAB, ATLAS, RHIC, GSI, TRIUMF,...
- Neutrino and gravitational wave signals encode info about nuclear EOS
- Test BSM physics of neutrinos

$M_{Fe} \sim M_{\rm Ch} \sim 1.4 \ M_{\odot}$ $\rho_c \sim 10^{10} \text{ g cm}^{-3}$ $Y_e \sim 0.43$

$M_{Fe} \sim M_{\rm Ch} \sim 1.4 \ M_{\odot}$ $ho_c \sim 10^{10} \ {\rm g \ cm^{-3}}$ $Y_e \sim 0.43$

2000 km

Fe

FRIB TA Meeting, 1 April 2016

10⁵⁷ neutrinos released!!

 $Y_e \sim 0.27$

50 km

FRIB TA Meeting, 1 April 2016

$\mathrm{Fe} \rightarrow 4 \mathrm{He}$

M

Shock stalls... What revives it?? => The CCSN "Problem"

Dense Matter Equation of State

- Can impact:
 - Explosion (Marek et al. 2009; SMC 2013; Suwa et al. 2013)
 - Gravitational wave emission (Marek et al. 2009; Mueller et al. 2013)
 - Neutrino emission (O'Connor & Ott 2013)

Fischer et al. 2014

S.M. Couch

3D CCSN Simulations

Time=0.299 s

200 km

3D CCSN Simulations

Time=0.299 s

200 km

3D with Full Nu Transport Janka, Melson, & Summa (2016)

3D explosions required:

- low-mass progenitor
- (unphysically) large strangeness correction
- rapid rotation

Results from Oak Ridge Group

II Nu Transport (2015), Lentz et al. (2015)

3D explodes later than 2D Only 2° resolution...

Resolution Dependence

D. Radice, C. Ott, SMC, et al., ApJ, 820, 76

- Analytic accretion shock IC's
- Inner boundary
- Lightbulb heating/cooling
- Fixed-metric GR

3D Slices

Resolution Dependence

D. Radice, C. Ott, SMC, et al., ApJ, 820, 76

- Analytic accretion shock IC's
- Inner boundary
- Lightbulb heating/cooling
- Fixed-metric GR

3D Slices

3(D) steps forward, 1(D) step back?

- physics wrong...
- Possibilities:
 - Progenitor structure
 - MHD/rotation
 - Behavior of turbulence/low-resolution O

 - Equation of state
 - Nuclear physics (i.e., strangeness)

Success of explosions in 2D may not be recovered in 3D... We must be missing physics, or getting the

• Neutrino effects (i.e., oscillation, x-sections, sterile)

3(D) steps forward, 1(D) step back?

- physics wrong...
- Possibilities:
 - **Progenitor structure**
 - MHD/rotation Ø
 - Behavior of turbulence/low-resolution

 - Equation of state
 - Nuclear physics (i.e., strangeness)

Success of explosions in 2D may not be recovered in 3D... We must be missing physics, or getting the

• Neutrino effects (i.e., oscillation, x-sections, sterile)

CCSN is an Initial Value Problem ...And we have problems with our initial values

- All stars rotate
- All stars have magnetic fields
- binaries

• Stars are not (perfectly) spherical

>50% of SN progenitors in interacting

CCSN is an Initial Value Problem ...And we have problems with our initial values

- All stars rotate
- All stars have magnetic fields
- binaries

• Stars are not (perfectly) spherical

>50% of SN progenitors in interacting

The CCSN "Problem" might not exist...

CCSN is an Initial Value Problem ...And we have problems with our initial values

- All stars rotate
- All stars have magnetic fields
- binaries

Stars are not (perfectly) spherical

>50% of SN progenitors in interacting

The CCSN "Problem" might not exist...

Unperturbed

Progenitor Asphericity in 3D SMC & Ott (2013, 2015); SMC et al. (2015)

Time=0.251 s

200 km

Perturbed

200 km

Unperturbed

Progenitor Asphericity in 3D SMC & Ott (2013, 2015); SMC et al. (2015)

Time=0.251 s

200 km

Perturbed

200 km

J. Lippuner, L. Roberts

JINA Online Seminar, 29 January 2016

Connecting to Observation

With an explosion model:

- **Gravitational Waves**
- Neutrinos
- NS/BH mass distributions
- Nucleosynthesis
- Light curves/spectra
- Nuclear data

J. Lippuner, L. Roberts

JINA Online Seminar, 29 January 2016

Connecting to Observation

With an explosion model:

- **Gravitational Waves**
- Neutrinos
- NS/BH mass distributions
- Nucleosynthesis
- Light curves/spectra
- Nuclear data

Toward predictive CCSN theory

- Modern high-performance computing revolutionizing CCSN theory
- CCSN mechanism depends critically on nuclear theory input
- Understanding sensitivity to nuclear physics requires robust explosion model
- Goal of predictive CCSN theory within reach!

